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Executive Summary
This white paper explores how materials informatics the fusion of materials science, 
Artificial intelligence (AI), and Machine learning (ML) is transforming materials 
discovery. Combining data-driven modeling, automation, and active learning 
approach to accelerate innovation, reduces R&D costs, and enables self-driving 
laboratories that operate with minimal human intervention. The paper also 
addresses challenges around data quality, model generalization, and interdisciplinary 
integration. Finally, it outlines Tech Mahindra’s role in advancing this field through its 
Makers Lab ecosystem, which leverages AI-powered data platforms and simulation 
tools to drive sustainable, high-impact innovations in materials research.
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Key Takeaways 
AI-Driven Data Curation & 
Aggregation Platforms

• Capability: Building centralized 
platforms to compile, clean, and 
structure data from diverse sources 
(lab notebooks, publications, patents).

• Strategic Value: Addressing a major 
industry pain point- data fragmentation 
and poor metadata quality. By creating 
machine-readable repositories, Tech 
Mahindra can enable more accurate 
and scalable ML model training.

• Opportunity: How Tech Mahindra is a 
leading data backbone provider for 
materials science, like what AWS is for 
cloud infrastructure.

• Capability: Using deep learning  (e.g., 
graph neural networks) and quantum 
computing to simulate atomic-level 
interactions.

• Strategic Value: Reducing prototyping 
costs and speeding up material 
validation. This is especially valuable 
for clients in the semiconductor, 
energy, and advanced manufacturing 
sectors.

• Opportunity: Offering cloud-based 
virtual testing environments as a 
service-allowing clients to test 
materials digitally before physical 
synthesis.

AI-Powered Modeling
& Simulation

• Capability: Partnering with 
universities, national labs, and 
industry players to access 
specialized datasets and validate 
AI predictions.

• Strategic Value: Enhancing 
credibility and accelerates 
innovation cycles. Additionally, it 
helps standardize AI practices in 
materials science.

• Opportunity: Leading joint 
initiatives to co-develop open 
standards, benchmark datasets, 
and validation protocols for AI in 
materials discovery.

Industry-Academia 
Collaboration

Generative AI for
Material Design

• Capability: Developing generative 
models (e.g., VAEs, transformers) 
to design materials based on 
desired properties.

• Strategic Value: Enabling inverse 
design workflows, where clients 
specify performance goals and 
receive candidate materials.

• Opportunity: Launching a 
“Materials Design Studio” 
platform-an intuitive interface for 
R&D teams to explore 
AI-generated material options.



Introduction
Historically, advances in materials science relied on trial-and-error experimentation, 
researcher intuition, and discovery. While this empirical approach produced 
breakthroughs such as semiconductor-grade silicon, lightweight aluminium alloys, and 
high-strength steels, it is inherently slow, costly, and has a limited scope. The 
traditional rate of discovery cannot meet the pressing global challenges of developing 
next-generation energy technologies or sustainable materials for a greener economy.

Materials informatics offers a new paradigm by merging materials science with 
Artificial intelligence (AI) and Machine learning (ML). Researchers can accelerate 
progress from concept to implementation using extensive datasets, statistical 
learning, and computational modelling.

At its core, the approach uses surrogate ML models trained on existing data to predict 
material properties thousands of times faster-and at a fraction of the cost-of 
traditional methods. Raw materials data are converted into numerical formats, 
capturing essential chemical, structural, and processing characteristics. With these 
fingerprints, ML algorithms-ranging from decision trees to graph neural networks-can 
detect patterns, predict properties, and recommend new material formulations or 
synthesis routes.

Process diagram illustrating the workflow:
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Domains:

• Self-driving lab
• Image defect detection and analysis
• Simulation acceleration
• Accerated materials discovery
• Overcome-human bias

Active learning for efficient discovery:

• Make a surrogate model

• Quickly predict for all candidates

• Screen top (using EI) predicted 
candidate

• Experimentally validate ML suggested 
candidate and increase dataset size

Known datasets
(Materials design 
and property 
values)

Model training
(ML model, e.g. GPR)

Selection and next 
experienment
(Design choice 
using acquisition 
function)

Model predictions
(Property 
predictions for all 
potential 
experiments)

Active
Learning



05

Why Material Informatics Matters
One of the main challenges facing science and engineering is the vastness of the 
materials space, which is why materials informatics is so important. Every 
combination of elements, crystal structures, and processing methods could yield a 
new material—but the sheer number of possibilities makes exhaustive exploration 
through traditional trial-and-error approaches practically impossible within the 
lifetime of the universe. Data-driven approaches in materials informatics help 
identify trends in existing experimental and computational data, highlighting the 
most promising candidates for focused research rather than exhaustively testing 
every option.

Active learning enhances this process by allowing ML models to recommend the 
next most informative experiments. Researchers can explore vast parameter spaces 
with minimal effort through closed-loop design-build-test-learn cycles. Combined 
with automated synthesis and characterization platforms, this enables self-driving 
laboratories—autonomous experimental systems that continuously generate, test, 
and refine materials without human intervention.

Beyond speed, materials informatics 
promotes a broader ecosystem of 
materials intelligence: generative 
models that “invert” discovery to 
design materials meeting target 
specifications; natural language 
processing (NLP) tools that mine 
decades of literature for hidden 
structure–property–processing 
relationships; and open repositories 
such as the Materials Project, OQMD, 
and NOMAD that house millions of 
entries. These developments foster a 
feedback-rich environment where 
computation, experimentation, and 
analytics interact seamlessly, 
ushering in unprecedented levels of 
AI-assisted scientific discovery.

Ultimately, the fusion of machine 
guidance and human intuition 
redefines the scientific method. 
This human–machine partnership 
enables researchers to meet 
emerging technological demands, 
optimize performance for specific 
applications, and systematically 
navigate the vast materials 
landscape. This will drive innovation 
across energy, healthcare, 
infrastructure, and sustainable 
manufacturing—ensuring that 
materials discovery keeps pace 
with the needs of the 21st century.
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This approach's strength lies in its ability to convert material knowledge into 
machine-readable formats, known as "fingerprints," which capture key traits at 
various levels of detail-from atomic configurations to elemental chemical 
compositions. By linking these fingerprints to properties or performance results, 
machine learning algorithms can develop surrogate models that evaluate new 
candidates much faster than traditional simulations or experiments. This shift is not 
just about speed; it also enables entirely new research methods, such as inverse 
design-which creates candidate materials matching specified properties-and active 
learning, where algorithms guide experimental efforts toward high-value, unexplored 
areas of the design space.

Many successes have already showcased the impact: superhard ceramics, 
high-efficiency thermoelectrics, high-entropy alloys with exceptional strength, and 
metallic glasses with targeted properties have all been discovered through 
ML-guided screening. In each case, integrating data sources, domain expertise, and 
prediction algorithms revealed previously unknown structure-property relationships 
while reducing costly and time-consuming experimental cycles. Additionally, the 
accessible knowledge pool is expanding rapidly, thanks to large open repositories 
like Materials Project, AFLOW, and NOMAD, as well as natural language processing 
techniques that mine scientific literature.

The economic impact is significant. For a fraction of the cost of a single 
high-fidelity simulation or synthesis experiment, machine learning models can 
evaluate millions of hypothetical materials once trained. When combined with 
automated characterization, robotic synthesis, and advanced computational 
infrastructure, these tools form “materials intelligence ecosystems”—integrated, 
semi-autonomous research environments that continuously design, test, and 
optimize materials. 
These systems have the potential to accelerate innovation, reduce R&D costs, 
and enable the rapid deployment of new materials in fields such as quantum 
computing and renewable energy. In summary, materials informatics 
represents a paradigm shift in the discovery and development of materials. 
By combining machine learning's predictive capabilities with 
curated data and automated experimentation, it transforms 
an otherwise intractable search into a guided exploration.
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The Toolbox of Materials Informatics
Over the past decade, the materials informatics toolbox has expanded significantly, 
evolving from basic statistical techniques to a comprehensive ecosystem of 
algorithms, data pipelines, and automated experimentation. The field utilizes 
traditional regression and classification models to map materials to characteristics 
such as hardness, conductivity, or thermal stability. While more sophisticated 
algorithms, such as deep neural networks and Gaussian process regression, handle 
non-linear, high-dimensional relationships in richer datasets, more conventional 
techniques like linear regression, decision trees, kernel methods, and random forests 
remain helpful due to their interpretability and efficacy in low-data regimes.

The incorporation of physics-informed machine learning is another developing 
aspect. These models incorporate well-known physical constraints, such as 
conservation laws, thermodynamic relations, or symmetry rules, directly into the 
learning process rather than treating materials as "black boxes." By adhering to 
these guidelines, physics-informed neural networks increase extrapolative power 
and predictive accuracy, enabling trustworthy predictions in uncharted areas of 
materials space. In fields where physical theory is developed but experimental data 
is limited, this blending of data-driven and physics-based reasoning is especially 
crucial.

One of its distinguishing features is the capacity of contemporary materials 
informatics to learn adaptively through Bayesian optimization and active 
learning. In this case, the machine learning model does more than just 
passively fit data; it suggests the next most instructive experiment or 
simulation to run, striking a balance between exploring uncharted material 
space and exploiting promising leads. Because fewer expensive physical or 
computational tests are required thanks to this closed-loop method, 
innovations such as the targeted discovery of high-performance piezoelectric 
and high-entropy alloys with limited initial data are made possible.
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The Role of Materials Fingerprints
The concept of a materials fingerprint is crucial in materials informatics because it 
transforms raw scientific data into a format that machine learning models can 
understand and utilize efficiently. The key features of a material-such as its chemical 
composition, crystallographic structure, local bonding environment, and sometimes 
even its processing history-are represented numerically by its fingerprint. This 
conversion from physical reality to numerical data enables algorithms to identify 
correlations, recognize patterns, and make predictions without directly handling the 
physical systems. The effectiveness of a model and its ability to provide insights into 
the underlying science rely on how detailed and relevant these fingerprints are.

New avenues for knowledge extraction have been made possible by large language 
models (LLMs) and natural language processing (NLP). Domain-specific LLMs can 
mine large databases of scientific publications and patents to create structured 
materials databases that capture properties, synthesis conditions, and relationships 
between processing, structure, and performance at scale. When generative design 
algorithms are combined with learned chemical intuition, the result is 
“materials-aware” assistants that can detect data gaps, suggest synthesis pathways, 
and generate novel material candidates.

Finally, specialized methods for processing complex microstructure data 
at high throughput are being developed. For example, deep neural 
networks-specifically, convolutional architectures-are used to quantify 
morphological variations from materials images, detect defects, and 
segment microstructural features. What once required painstaking 
manual analysis can now be automated, as these models can swiftly 
extract statistically meaningful features from massive microscopy and 
tomography datasets. Connecting these image-derived features with 
processing histories and measured properties enables researchers to 
uncover processing–structure–property relationships more efficiently, 
speeding up both scientific understanding and real-world applications.



Creating a dependable fingerprint is both a computational and scientific challenge. 
Domain knowledge ensures that descriptors include the most relevant chemical and 
physical factors influencing a target property. At the same time, algorithmic 
compatibility requires that fingerprints respect the invariances of the material 
system, avoiding unnecessary or superfluous features that could mislead the model.

Fingerprints can range from simple scalar values, like average bond lengths or 
composition ratios, to complex high-dimensional vectors that encode statistical 
features from microscopy images, crystallographic symmetries, or detailed local 
atomic environments. Recent advancements enable the direct generation of 
fingerprints from raw experimental or simulated data. For instance, deep neural 
networks can automatically extract relevant features from electron microscopy or 
X-ray diffraction patterns.

Well-designed fingerprints enhance interpretability, reduce the amount of 
data needed, and improve predictive accuracy by incorporating scientific 
knowledge directly into the learning process. They act as a bridge between 
the abstract reasoning of machine learning models and the physical 
understanding of materials.
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Emerging Materials 
Informatics Ecosystems
Recent progress has enabled interconnected ecosystems where computational 
tools, experiments, and data analytics operate together, enabling faster and more 
cost-effective research:

Monte Carlo methods, genetic algorithms, and Bayesian optimization 
guide experiments toward promising candidates, concentrating 
resources efficiently.

Active Learning for Discovery

ML-based surrogate models replace slow physics simulations, 
providing accurate predictions at lower cost.

Accelerated Simulation 

At the frontier, robotics and AI perform synthesis, processing, and 
characterization with minimal human input, dramatically increasing 
scalability and reliability.

Autonomous Laboratories 

Deep learning of microscopy images enables automatic phase 
classification and defect detection, improving throughput and 
reproducibility.

Microstructure Analysis

ML uncovers hidden relationships across datasets, refining 
theoretical understanding and informing industrial design.

Structure–Property–Processing Correlations 
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Self - Driving Labs  
A New Research Paradigm
Self-driving labs, which combine the capabilities of robotics, artificial intelligence, and 
automated characterization into a single closed-loop system, mark a revolutionary 
advancement in materials research. Self-driving labs plan, carry out, analyze, and 
iterate experiments without human assistance, unlike high-throughput labs that 
merely carry out big batches of pre-programmed experiments. The efficiency of 
materials discovery and optimization is significantly increased by active learning 
algorithms that adaptively explore complex experimental spaces, enabling this 
continuous "experiment–analysis–decision" cycle. These platforms operate around 
the clock, enhance laboratory safety by minimizing direct handling of hazardous 
materials, ensure reproducibility by eliminating human error, and, above all, navigate 
high-dimensional parameter spaces that would be impossible for a human 
researcher to explore manually.
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A striking example comes from the 
work of Prof. Andrew I. Cooper’s 
group at the University of Liverpool, 
one of the pioneers in this field. In a 
groundbreaking study, researchers 
deployed a mobile robot chemist to 
autonomously search for improved 
photocatalysts that can convert 
water into hydrogen [1]. Using a 
batched Bayesian search algorithm, 
the system ran 688 experiments 
over eight days in a ten-variable 
space. The robot carried out the 
entire workflow autonomously—from 
loading and weighing solids to 
dispensing liquids, controlling 
reaction conditions, performing 
photolysis, and analyzing hydrogen 
output. Using the same approach, the 
group identified new solid-state 
materials [2]. They also integrated 
multiple robotic platforms to 
automate crystallization, sample 
handling, powder X-ray diffraction, 
and, later, exploratory synthetic 
chemistry using UPLC-MS and NMR 
[3]. These examples highlight the 
versatility of self-driving labs across 
diverse chemistries and experimental 
workflows.

The range of self-driving labs is 
quickly growing beyond just single 
case studies. Global initiatives have 
shown their usefulness in improving 
photovoltaic films [4], creating 
uniform conductive thin films 
through spray combustion synthesis 
[5], making complex polymer blends 
for stable organic photovoltaics [6], 

finding new perovskite single crystals 
[7], changing reaction conditions to 
get higher yields in different 
chemical syntheses [8,9], speeding 
up solid-state synthesis of new 
inorganic powders [10], and 
optimizing redox-active materials for 
flow batteries [11]. The common 
thread that runs through all these 
examples is that autonomous 
systems can learn from data in 
real-time and focus on the most 
promising experimental paths. This is 
something that even the most 
experienced human researchers 
can't do as quickly or as broadly.

Self-driving labs can help bridge the 
gap between scalable manufacturing 
and lab-scale experimentation [12]. 
To automatically optimize the 
processing conditions for electronic 
polymer films with low defects and 
high conductivity, the "Polybot" 
platform was created. Through the 
integration of stations for liquid 
handling, solution mixing, blade 
coating, annealing, in-line 
conductivity measurements, and 
imaging, the system determined the 
ideal fabrication parameters that 
produced transparent conductive 
thin films with conductivities 
exceeding 4500 S/cm. The identified 
parameters were notably applicable 
to large-scale production, 
underscoring the utility of such 
platforms in industrial settings.
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Active Learning for Efficient Discovery
Active learning has emerged as a 
transformative approach for 
accelerating materials discovery, 
particularly in cases where 
experimental budgets are limited 
and the design space is vast. Unlike 
traditional design-of-experiments 
strategies that select all 
experiments in advance, active 
learning iteratively decides on the 
next experiment based on the 
outcomes of previous ones, 
balancing the exploration of 
under-sampled regions with the 
exploitation of promising candidates. 
Interestingly, this approach is 
especially powerful when integrated 
with Bayesian optimization, where 
ML models predict material 
properties and quantify uncertainty, 
enabling informed decisions about 
where to sample next. In materials 
science, such adaptive 
experimentation has been 
instrumental in efficiently navigating 
high-dimensional parameter spaces 
to identify materials with optimal 
properties.

A compelling example comes from 
the discovery of high-electrostrain 
perovskite piezoelectric, where only 
61 out of 605,000 compositions 
were initially tested. By starting with 
a small dataset and employing a 
group of ML models with different 
acquisition functions, researchers 
iteratively refined their search to 
identify a composition, 
(Ba₀.₈₄Ca₀.₁₆)(Ti₀.₉₀Zr₀.₀₇Sn₀.₀₃)O₃, 
that exhibited a 50% higher 
electrostrain than the best candidate 
in the initial dataset. Similar 
active-learning strategies have been 
successfully applied to the design of 
high-strength high-entropy alloys, 
low-hysteresis shape-memory alloys, 
and morphotropic-phase-boundary 
piezoelectric, in each case 
dramatically reducing the number of 
required experiments while 
uncovering superior materials.
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Recent work in peptide-based 
materials discovery provides another 
striking demonstration of the value 
of active learning. Researchers used 
an AI-driven, experiment-informed 
workflow to identify β-sheet–forming 
pentapeptides for self-assembling 
nanostructures. The researchers 
iteratively trained ML models and 
selected candidates from a large 
sequence library, starting from a 
small dataset. They experimentally 
validated them, focusing particularly 
on cases where ML predictions 
diverged from conventional β-sheet 
propensity tables. Over three 
active-learning loops, they 
synthesized and tested 268 
pentapeptides, discovering 96 that 
formed β sheets, including many 
unconventional sequences that 
traditional rules would have 
overlooked. Interestingly, this 
strategy not only improved 
predictive accuracy but also 
expanded the known chemical space 
for peptide assembly.

The broader relevance of active 
learning in materials discovery lies in 
its ability to simultaneously 
accelerate exploration and build 
high-quality datasets for future 
research. By appending each new 
validated data point back into the 
training set, active learning creates a 
virtuous cycle in which models 
continuously improve, guiding 
experiments more effectively. This is 
especially helpful in materials 
informatics, where datasets are often 
sparse and experimental costs are 
high. In addition, focusing on “areas 
of disagreement” between different 
models or between models and 
domain heuristics can systematically 
uncover nonintuitive candidates, 
leading to breakthrough discoveries 
that would be missed by human 
intuition alone.



Challenges and the Road Ahead
Despite encouraging developments, several obstacles still exist
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Data Quality and Availability
Materials datasets often lack standardization or metadata and omit 
negative results. Building FAIR (findable, accessible, interoperable, 
reusable) data pipelines and open repositories remains essential.

Generalization and Transferability
Models trained in specific chemical domains often fail elsewhere. 
Multitask learning, domain adaptation, and physics-informed models 
can improve cross-domain robustness.

Integration With Physical Knowledge
Data-only models may violate physical laws; incorporating 
thermodynamics and symmetry constraints ensures theoretical 
soundness.

Hardware and Experimental Constraints
Multi-step synthesis, hazardous reagents, and high-temperature 
chemistries still challenge autonomous labs. Standardized control 
protocols and adaptive planning are needed.

Interdisciplinary Collaboration
Close coordination among materials scientists, data scientists, 
roboticists, and chemists is essential for the practical deployment of 
these technologies.
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Tech Mahindra’s Role in the 
Materials Science Process
Here’s how Tech Mahindra, through Makers Lab and its AI capabilities, can contribute 
to the field of material discovery

Generative models, including variational autoencoders and transformers, 
can design new materials that meet specified performance criteria. 
Maker’s Lab could lead the development of an AI-based “materials design 
studio,” enabling users to input desired properties and obtain candidate 
materials.

Generative AI for Material Design

Drawing on Maker’s Lab work in AI and quantum computing (Tech 
Mahindra, n.d.), the company can simulate atomic-level interactions in 
novel materials using deep learning architectures, such as graph neural 
networks. Cloud-based virtual testing environments will enable industrial 
clients to evaluate AI-predicted materials before synthesis, thereby 
reducing prototyping costs.

AI-Powered Modelling and Simulation

AI depends on high-quality data. Tech Mahindra can build centralized 
platforms that compile, clean, and organize simulation and experimental 
data-from lab notebooks, publications, patents, and simulations-into 
machine-readable repositories. Its knowledge graphs and semantic search 
expertise will help AI models learn from decades of dispersed research.

Platforms for Data Curation and Aggregation

Through global partnerships with universities, national labs, and industry, 
Tech Mahindra can access specialized datasets and domain expertise. 
Joint initiatives may include co-developing AI standards for materials 
science or validating predicted materials in academic laboratories.

Collaboration with Industry and Academia

Tech Mahindra combines technological expertise, research networks, and innovative 
capacity to drive AI-enabled materials discovery. Investing in research platforms and 
sustainable practices can shape the next era of materials innovation.



17

The Way Forward 
Automation, data science, and materials science come together powerfully in 
materials informatics. It can completely change how we find, develop, and utilize new 
materials to meet future energy and sustainability demands by facilitating 
data-driven decision-making, accelerating simulation and experimentation, and 
creating the possibility of self-driving labs. The idea of a future in which AI-guided 
systems continuously build, test, and improve materials in a closed loop, cutting the 
time to discovery from decades to months or even days, is intriguing. Better 
algorithms alone won't be enough to accomplish this; we also need more diverse 
datasets, more adaptable robotics, and a shared dedication to incorporating AI into 
science.
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