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Executive Summary

This white paper explores how materials informatics the fusion of materials science,
Artificial intelligence (Al), and Machine learning (ML) is transforming materials
discovery. Combining data-driven modeling, automation, and active learning
approach to accelerate innovation, reduces R&D costs, and enables self-driving
laboratories that operate with minimal human intervention. The paper also
addresses challenges around data quality, model generalization, and interdisciplinary
integration. Finally, it outlines Tech Mahindra’s role in advancing this field through its
Makers Lab ecosystem, which leverages Al-powered data platforms and simulation
tools to drive sustainable, high-impact innovations in materials research.




Key Takeaways

Al-Driven Data Curation &
Aggregation Platforms

» Capability: Building centralized
platforms to compile, clean, and
structure data from diverse sources
(lab notebooks, publications, patents).

* Strategic Value: Addressing a major
industry pain point- data fragmentation
and poor metadata quality. By creating
machine-readable repositories, Tech
Mahindra can enable more accurate
and scalable ML model training.

e Opportunity: How Tech Mahindra is a
leading data backbone provider for
materials science, like what AWS is for
cloud infrastructure.

Generative Al for
Material Design

» Capability: Developing generative
models (e.g., VAEs, transformers)
to design materials based on
desired properties.

» Strategic Value: Enabling inverse
design workflows, where clients
specify performance goals and
receive candidate materials.

e Opportunity: Launching a
“Materials Design Studio”
platform-an intuitive interface for
R&D teams to explore
Al-generated material options.

Al-Powered Modeling
& Simulation

Capability: Using deep learning (e.g,,
graph neural networks) and quantum
computing to simulate atomic-level
interactions.

Strategic Value: Reducing prototyping
costs and speeding up material
validation. This is especially valuable
for clients in the semiconductor,
energy, and advanced manufacturing
sectors.

Opportunity: Offering cloud-based
virtual testing environments as a
service-allowing clients to test
materials digitally before physical
synthesis.

Industry-Academia
Collaboration

Capability: Partnering with
universities, national labs, and
industry players to access
specialized datasets and validate
Al predictions.

Strategic Value: Enhancing
credibility and accelerates
innovation cycles. Additionally, it
helps standardize Al practices in
materials science.

Opportunity: Leading joint
initiatives to co-develop open
standards, benchmark datasets,
and validation protocols for Al in
materials discovery.




g

Introduction

Historically, advances in materials science relied on trial-and-error experimentation,
researcher intuition, and discovery. While this empirical approach produced
breakthroughs such as semiconductor-grade silicon, lightweight aluminium alloys, and
high-strength steels, it is inherently slow, costly, and has a limited scope. The
traditional rate of discovery cannot meet the pressing global challenges of developing
next-generation energy technologies or sustainable materials for a greener economy.

Materials informatics offers a new paradigm by merging materials science with
Artificial intelligence (Al) and Machine learning (ML). Researchers can accelerate
progress from concept to implementation using extensive datasets, statistical
learning, and computational modelling.

At its core, the approach uses surrogate ML models trained on existing data to predict
material properties thousands of times faster-and at a fraction of the cost-of
traditional methods. Raw materials data are converted into numerical formats,
capturing essential chemical, structural, and processing characteristics. With these
fingerprints, ML algorithms-ranging from decision trees to graph neural networks-can
detect patterns, predict properties, and recommend new material formulations or
synthesis routes.
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Active learning enhances this process by allowing ML models to recommend the
next most informative experiments. Researchers can explore vast parameter spaces
with minimal effort through closed-loop design-build-test-learn cycles. Combined
with automated synthesis and characterization platforms, this enables self-driving
laboratories—autonomous experimental systems that continuously generate, test,
and refine materials without human intervention.

Beyond speed, materials informatics
promotes a broader ecosystem of
materials intelligence: generative
models that “invert” discovery to
design materials meeting target
specifications; natural language
processing (NLP) tools that mine
decades of literature for hidden
structure-property-processing
relationships; and open repositories
such as the Materials Project, OQMD,
and NOMAD that house millions of
entries. These developments foster a
feedback-rich environment where
computation, experimentation, and
analytics interact seamlessly,
ushering in unprecedented levels of
Al-assisted scientific discovery.

Ultimately, the fusion of machine
guidance and human intuition
redefines the scientific method.
This human-machine partnership
enables researchers to meet
emerging technological demands,
optimize performance for specific
applications, and systematically
navigate the vast materials
landscape. This will drive innovation
across energy, healthcare,
infrastructure, and sustainable
manufacturing—ensuring that
materials discovery keeps pace
with the needs of the 21st century.

Why Material Informatics Matters

One of the main challenges facing science and engineering is the vastness of the
materials space, which is why materials informatics is so important. Every
combination of elements, crystal structures, and processing methods could yield a
new material—but the sheer number of possibilities makes exhaustive exploration
through traditional trial-and-error approaches practically impossible within the
lifetime of the universe. Data-driven approaches in materials informatics help
identify trends in existing experimental and computational data, highlighting the
most promising candidates for focused research rather than exhaustively testing

every option.




This approach's strength lies in its ability to convert material knowledge into
machine-readable formats, known as "fingerprints" which capture key traits at
various levels of detail-from atomic configurations to elemental chemical
compositions. By linking these fingerprints to properties or performance results,
machine learning algorithms can develop surrogate models that evaluate new
candidates much faster than traditional simulations or experiments. This shift is not
just about speed; it also enables entirely new research methods, such as inverse
design-which creates candidate materials matching specified properties-and active
learning, where algorithms guide experimental efforts toward high-value, unexplored
areas of the design space.

Many successes have already showcased the impact: superhard ceramics,
high-efficiency thermoelectrics, high-entropy alloys with exceptional strength, and
metallic glasses with targeted properties have all been discovered through
ML-guided screening. In each case, integrating data sources, domain expertise, and
prediction algorithms revealed previously unknown structure-property relationships
while reducing costly and time-consuming experimental cycles. Additionally, the
accessible knowledge pool is expanding rapidly, thanks to large open repositories
like Materials Project, AFLOW, and NOMAD, as well as natural language processing
techniques that mine scientific literature.

The economic impact is significant. For a fraction of the cost of a single
high-fidelity simulation or synthesis experiment, machine learning models can
evaluate millions of hypothetical materials once trained. When combined with
automated characterization, robotic synthesis, and advanced computational
infrastructure, these tools form “materials intelligence ecosystems”"—integrated,
semi-autonomous research environments that continuously design, test, and
optimize materials.

These systems have the potential to accelerate innovation, reduce R&D costs,

and enable the rapid deployment of new materials in fields such as quantum
computing and renewable energy. In summary, materials informatics
represents a paradigm shift in the discovery and development of materials.
By combining machine learning's predictive capabilities with

curated data and automated experimentation, it transforms

an otherwise intractable search into a guided exploration.
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The Toolbox of Materials Informatics

Over the past decade, the materials informatics toolbox has expanded significantly,
evolving from basic statistical techniques to a comprehensive ecosystem of
algorithms, data pipelines, and automated experimentation. The field utilizes
traditional regression and classification models to map materials to characteristics
such as hardness, conductivity, or thermal stability. While more sophisticated
algorithms, such as deep neural networks and Gaussian process regression, handle
non-linear, high-dimensional relationships in richer datasets, more conventional
techniques like linear regression, decision trees, kernel methods, and random forests
remain helpful due to their interpretability and efficacy in low-data regimes.

One of its distinguishing features is the capacity of contemporary materials
informatics to learn adaptively through Bayesian optimization and active
learning. In this case, the machine learning model does more than just
passively fit data; it suggests the next most instructive experiment or
simulation to run, striking a balance between exploring uncharted material
space and exploiting promising leads. Because fewer expensive physical or
computational tests are required thanks to this closed-loop method,
innovations such as the targeted discovery of high-performance piezoelectric
and high-entropy alloys with limited initial data are made possible.

The incorporation of physics-informed machine learning is another developing
aspect. These models incorporate well-known physical constraints, such as
conservation laws, thermodynamic relations, or symmetry rules, directly into the
learning process rather than treating materials as "black boxes." By adhering to
these guidelines, physics-informed neural networks increase extrapolative power
and predictive accuracy, enabling trustworthy predictions in uncharted areas of
materials space. In fields where physical theory is developed but experimental data
is limited, this blending of data-driven and physics-based reasoning is especially
crucial.
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New avenues for knowledge extraction have been made possible by large language
models (LLMs) and natural language processing (NLP). Domain-specific LLMs can
mine large databases of scientific publications and patents to create structured
materials databases that capture properties, synthesis conditions, and relationships
between processing, structure, and performance at scale. When generative design
algorithms are combined with learned chemical intuition, the result is
“materials-aware” assistants that can detect data gaps, suggest synthesis pathways,
and generate novel material candidates.

Finally, specialized methods for processing complex microstructure data
at high throughput are being developed. For example, deep neural
networks-specifically, convolutional architectures-are used to quantify
morphological variations from materials images, detect defects, and
segment microstructural features. What once required painstaking

manual analysis can now be automated, as these models can swiftly
extract statistically meaningful features from massive microscopy and
tomography datasets. Connecting these image-derived features with
processing histories and measured properties enables researchers to
uncover processing-structure-property relationships more efficiently,
speeding up both scientific understanding and real-world applications.

The Role of Materials Fingerprints

The concept of a materials fingerprint is crucial in materials informatics because it
transforms raw scientific data into a format that machine learning models can
understand and utilize efficiently. The key features of a material-such as its chemical
composition, crystallographic structure, local bonding environment, and sometimes
even its processing history-are represented numerically by its fingerprint. This
conversion from physical reality to numerical data enables algorithms to identify
correlations, recognize patterns, and make predictions without directly handling the
physical systems. The effectiveness of a model and its ability to provide insights into
the underlying science rely on how detailed and relevant these fingerprints are.
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Creating a dependable fingerprint is both a computational and scientific challenge.
Domain knowledge ensures that descriptors include the most relevant chemical and
physical factors influencing a target property. At the same time, algorithmic
compatibility requires that fingerprints respect the invariances of the material
system, avoiding unnecessary or superfluous features that could mislead the model.

Fingerprints can range from simple scalar values, like average bond lengths or
composition ratios, to complex high-dimensional vectors that encode statistical
features from microscopy images, crystallographic symmetries, or detailed local
atomic environments. Recent advancements enable the direct generation of
fingerprints from raw experimental or simulated data. For instance, deep neural
networks can automatically extract relevant features from electron microscopy or
X-ray diffraction patterns.

Well-designed fingerprints enhance interpretability, reduce the amount of
data needed, and improve predictive accuracy by incorporating scientific
knowledge directly into the learning process. They act as a bridge between
the abstract reasoning of machine learning models and the physical
understanding of materials.




Emerging Materials
Informatics Ecosystems
Recent progress has enabled interconnected ecosystems where computational

tools, experiments, and data analytics operate together, enabling faster and more
cost-effective research:

Active Learning for Discovery

Monte Carlo methods, genetic algorithms, and Bayesian optimization
guide experiments toward promising candidates, concentrating
resources efficiently.

@

Accelerated Simulation

ML-based surrogate models replace slow physics simulations,
providing accurate predictions at lower cost.

D

Microstructure Analysis
% Deep learning of microscopy images enables automatic phase

classification and defect detection, improving throughput and
reproducibility.

Structure-Property-Processing Correlations

ML uncovers hidden relationships across datasets, refining
theoretical understanding and informing industrial design.

Autonomous Laboratories

At the frontier, robotics and Al perform synthesis, processing, and
characterization with minimal human input, dramatically increasing
scalability and reliability.




Self - Driving Labs
A New Research Paradigm

Self-driving labs, which combine the capabilities of robotics, artificial intelligence, and
automated characterization into a single closed-loop system, mark a revolutionary
advancement in materials research. Self-driving labs plan, carry out, analyze, and
iterate experiments without human assistance, unlike high-throughput labs that
merely carry out big batches of pre-programmed experiments. The efficiency of
materials discovery and optimization is significantly increased by active learning
algorithms that adaptively explore complex experimental spaces, enabling this
continuous "experiment-analysis-decision" cycle. These platforms operate around
the clock, enhance laboratory safety by minimizing direct handling of hazardous
materials, ensure reproducibility by eliminating human error, and, above all, havigate
high-dimensional parameter spaces that would be impossible for a human
researcher to explore manually.

11




A striking example comes from the
work of Prof. Andrew |. Cooper’s
group at the University of Liverpool,
one of the pioneers in this field. In a
groundbreaking study, researchers
deployed a mobile robot chemist to
autonomously search for improved
photocatalysts that can convert
water into hydrogen [1]. Using a
batched Bayesian search algorithm,
the system ran 688 experiments
over eight days in a ten-variable
space. The robot carried out the
entire workflow autonomously—from
loading and weighing solids to
dispensing liquids, controlling
reaction conditions, performing
photolysis, and analyzing hydrogen
output. Using the same approach, the
group identified new solid-state
materials [2]. They also integrated
multiple robotic platforms to
automate crystallization, sample
handling, powder X-ray diffraction,
and, later, exploratory synthetic
chemistry using UPLC-MS and NMR
[3]. These examples highlight the
versatility of self-driving labs across
diverse chemistries and experimental
workflows.

The range of self-driving labs is
quickly growing beyond just single
case studies. Global initiatives have
shown their usefulness in improving
photovoltaic films [4], creating
uniform conductive thin films
through spray combustion synthesis
[5], making complex polymer blends
for stable organic photovoltaics [6],
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finding new perovskite single crystals
[7], changing reaction conditions to
get higher yields in different
chemical syntheses [8,9], speeding
up solid-state synthesis of new
inorganic powders [10], and
optimizing redox-active materials for
flow batteries [11]. The common
thread that runs through all these
examples is that autonomous
systems can learn from data in
real-time and focus on the most
promising experimental paths. This is
something that even the most
experienced human researchers
can't do as quickly or as broadly.

Self-driving labs can help bridge the
gap between scalable manufacturing
and lab-scale experimentation [12].
To automatically optimize the
processing conditions for electronic
polymer films with low defects and
high conductivity, the "Polybot"
platform was created. Through the
integration of stations for liquid
handling, solution mixing, blade
coating, annealing, in-line
conductivity measurements, and
imaging, the system determined the
ideal fabrication parameters that
produced transparent conductive
thin films with conductivities
exceeding 4500 S/cm. The identified
parameters were notably applicable
to large-scale production,
underscoring the utility of such
platforms in industrial settings.




Active Learning for Efficient Discovery

Active learning has emerged as a
transformative approach for
accelerating materials discovery,
particularly in cases where
experimental budgets are limited
and the design space is vast. Unlike
traditional design-of-experiments
strategies that select all
experiments in advance, active
learning iteratively decides on the
next experiment based on the
outcomes of previous ones,
balancing the exploration of
under-sampled regions with the

exploitation of promising candidates.

Interestingly, this approach is
especially powerful when integrated
with Bayesian optimization, where
ML models predict material
properties and quantify uncertainty;,
enabling informed decisions about
where to sample next. In materials
science, such adaptive
experimentation has been
instrumental in efficiently navigating
high-dimensional parameter spaces
to identify materials with optimal
properties.

A compelling example comes from
the discovery of high-electrostrain
perovskite piezoelectric, where only
61 out of 605,000 compositions
were initially tested. By starting with
a small dataset and employing a
group of ML models with different
acquisition functions, researchers
iteratively refined their search to
identify a composition,
(Bao-84cao-16)(Tio-gozro-o7sno-o3)o3;
that exhibited a 50% higher
electrostrain than the best candidate
in the initial dataset. Similar
active-learning strategies have been
successfully applied to the design of
high-strength high-entropy alloys,
low-hysteresis shape-memory alloys,
and morphotropic-phase-boundary
piezoelectric, in each case
dramatically reducing the number of
required experiments while
uncovering superior materials.




Recent work in peptide-based
materials discovery provides another
striking demonstration of the value
of active learning. Researchers used
an Al-driven, experiment-informed
workflow to identify p-sheet-forming
pentapeptides for self-assembling
nanostructures. The researchers
iteratively trained ML models and
selected candidates from a large
sequence library, starting from a
small dataset. They experimentally
validated them, focusing particularly
on cases where ML predictions
diverged from conventional p-sheet
propensity tables. Over three
active-learning loops, they
synthesized and tested 268
pentapeptides, discovering 96 that
formed B sheets, including many
unconventional sequences that
traditional rules would have
overlooked. Interestingly, this
strategy not only improved
predictive accuracy but also
expanded the known chemical space
for peptide assembly.
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The broader relevance of active
learning in materials discovery lies in
its ability to simultaneously
accelerate exploration and build
high-quality datasets for future
research. By appending each new
validated data point back into the
training set, active learning creates a
virtuous cycle in which models
continuously improve, guiding
experiments more effectively. This is
especially helpful in materials
informatics, where datasets are often
sparse and experimental costs are
high. In addition, focusing on “areas
of disagreement” between different
models or between models and
domain heuristics can systematically
uncover nonintuitive candidates,
leading to breakthrough discoveries
that would be missed by human
intuition alone.

14




Challenges and the Road Ahead

Despite encouraging developments, several obstacles still exist
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Data Quality and Availability

Materials datasets often lack standardization or metadata and omit
negative results. Building FAIR (findable, accessible, interoperable,
reusable) data pipelines and open repositories remains essential.

Generalization and Transferability

Models trained in specific chemical domains often fail elsewhere.
Multitask learning, domain adaptation, and physics-informed models
can improve cross-domain robustness.

Integration With Physical Knowledge

Data-only models may violate physical laws; incorporating
thermodynamics and symmetry constraints ensures theoretical
soundness.

Hardware and Experimental Constraints

Multi-step synthesis, hazardous reagents, and high-temperature
chemistries still challenge autonomous labs. Standardized control
protocols and adaptive planning are needed.

Interdisciplinary Collaboration

Close coordination among materials scientists, data scientists,
roboticists, and chemists is essential for the practical deployment of
these technologies.

15




Tech Mahindra’s Role in the
Materials Science Process

Here's how Tech Mahindra, through Makers Lab and its Al capabilities, can contribute
to the field of material discovery

o9 °

E21

Platforms for Data Curation and Aggregation

Al depends on high-quality data. Tech Mahindra can build centralized
platforms that compile, clean, and organize simulation and experimental
data-from lab notebooks, publications, patents, and simulations-into
machine-readable repositories. Its knowledge graphs and semantic search
expertise will help Al models learn from decades of dispersed research.

Al-Powered Modelling and Simulation

Drawing on Maker’s Lab work in Al and quantum computing (Tech
Mahindra, n.d.), the company can simulate atomic-level interactions in
novel materials using deep learning architectures, such as graph neural
networks. Cloud-based virtual testing environments will enable industrial
clients to evaluate Al-predicted materials before synthesis, thereby
reducing prototyping costs.

Generative Al for Material Design

Generative models, including variational autoencoders and transformers,
can design new materials that meet specified performance criteria.
Maker's Lab could lead the development of an Al-based “materials design
studio,” enabling users to input desired properties and obtain candidate
materials.

Collaboration with Industry and Academia

Through global partnerships with universities, national labs, and industry;,
Tech Mahindra can access specialized datasets and domain expertise.
Joint initiatives may include co-developing Al standards for materials
science or validating predicted materials in academic laboratories.

Tech Mahindra combines technological expertise, research networks, and innovative
capacity to drive Al-enabled materials discovery. Investing in research platforms and
sustainable practices can shape the next era of materials innovation.
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The Way Forward

Automation, data science, and materials science come together powerfully in
materials informatics. It can completely change how we find, develop, and utilize new
materials to meet future energy and sustainability demands by facilitating
data-driven decision-making, accelerating simulation and experimentation, and
creating the possibility of self-driving labs. The idea of a future in which Al-guided
systems continuously build, test, and improve materials in a closed loop, cutting the
time to discovery from decades to months or even days, is intriguing. Better
algorithms alone won't be enough to accomplish this; we also need more diverse
datasets, more adaptable robotics, and a shared dedication to incorporating Al into
science.
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About Tech Mahindra
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Indian company in the world to have been awarded the Sustainable Markets Initiative’s Terra Carta Seal, which recognizes global
companies that are actively leading the charge to create a climate and nature-positive future. Tech Mahindra is part of the Mahindra
Group, founded in 1945, one of the largest and most admired multinational federation of companies.
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