TECH

Jan 26 Read Time - 15 Mins. .
mahinclra

Whitepaper

The Right-Shift Paradigm
In Software Development

Dynamic Agentic Generated
Applications (DAGA)

Executive The software industry is rapidly integrating Generative Al, yet this shift has focused almost
exclusively on the speed of coding rather than the structure of applications. While GenAl

Summary has dramatically accelerated how software is written, it has not fundamentally changed
now it Is built or operated. Current implementations, primarily Al-powered pair
programming, remain limited to generating static code, missing the opportunity to

reimagine application architecture itself.

This paper introduces Dynamic Agentic Generated Applications (DAGA), a framework where
Al agents generate user interfaces and middleware logic at runtime. We examine how
shifting from static compilation to runtime generation can reduce technical debt, enable
hyper-personalization, and address the limitations of traditional software delivery.

Content

Al Is Transforming
Development—But
Not Applications

Page 3-4

What the Market
Offers Today

Page 5

A New Approach to
Application Development

Page 6-7

What Changes When
Applications Become Agentic

Page 8

Key Risks and Design
Considerations

Page 9

What is needed to make
this happen?

Page 10

Conclusion
Page 11

About the Author
Page 12

| Al Is Transforming Development—But Not Applications

Generative Al is reshaping how software teams work across domains, from mobile applications to large enterprise systems. Tools such
as GitHub Copilot, AWS Q Developer, Windsurf, and others are revolutionizing the developer experience. They are now embedded into

development workflows, assisting developers and architects in code generation, accelerating application lifecycles, and improving
overall productivity.

One particularly impactful example is Al-powered pair programming, where agents collaborate with developers to generate code, fix
bugs, run tests, and manage dependencies. As a result, enterprises worldwide are actively encouraging developers to adopt these
Al-powered programming tools to boost efficiency and innovation.

However, this productivity leap has not translated into a fundamental shift in how applications are architected or how they behave
once deployed. Architects continue to design systems using established methodologies, and developers implement these designs
largely as static structures. Al accelerates coding but does not reshape the underlying application model. As a result, developers still
produce large volumes of static code—often hundreds of thousands of lines, that must be maintained by application support teams,
compounding operational complexity over time.

Modern Tools Traditional Applications

o ur T
I — oo

Developer —) Ul/UX Middleware Database
Al Pair
Programming

Tools

\ 4

Figure 1: Developers Use Al Pair-Programming Tools
to Build Traditional Applications

These dynamics give birth to several structural challenges that limit the industry’s ability to realize the promise of Al in software
development fully:

« Traditional application architecture remains unchanged even as Al accelerates development processes

« Developers generate significant volumes of code, increasing long-term maintenance burdens for support teams

« Al enhances development workflows but does not influence application behavior or adaptability once deployed

« The growing complexity of multi-agent coding tools results in more code to govern, debug, and support

* It Iis estimated that about 40% of Al generated code is unwanted code or “Al Slop” but still becomes part of the codebase

« Static Uls, forms, and middleware application programming interface (APIs) still require explicit coding, limiting dynamism and flexibility

To understand why these challenges persist, it is helpful to examine how agentic Al is being used in the market today—and where its
limitations lie.

| What the Market Offers Today

Currently the agentic Al solutions available in the market primarily focus on analytics. These platforms rely on agents operating
within their existing data environments to retrieve information, generate insights, and automate analytic workflows.

Snowflake Cortex Al is one such example. It provides LLM capabilities within the Snowflake Data Cloud, allowing users to analyze
structured and unstructured data using natural language across SQL and Python. While powerful for analytics, Cortex does not
generate application Ul, workflows, or backend logic at runtime.

As a result, current offerings demonstrate how agentic Al can support analytic tasks, but do not address the architectural challenges
of enterprise application development.

- A New Approach to Application Development

To break this cycle, we propose a fundamental shift in how software applications are developed. We refer to this concept as Dynamic Agentic
Generated Applications (DAGA), in which agentic intelligence generates Ul logic, and integrations at runtime. This approach shifts the focus
from maintaining massive static codebases to designing Al agents that generate application behavior in real time.

Developers define minimal agentic logic and constraints, while the agents handle Ul generation, data access, and interaction logic at runtime.
Consequently, the code is generated directly in production and rendered in the browser, enabling applications to adapt in real time.

Modern Tools Modern Applications

o u)) L3

S @
— 7 oo

Developer 0—0—0

Al Pair .
Programming Ul/UX Middleware Database

Tools

Figure 2: Shifting the code generation responsibility from agents
In the “IDE tools” to the agents in the “Application”

This concept introduces several shifts in how applications are built:

Runtime Code Generation Minimal Static Code On-Demand Interactions

Agents produce Ul elements, validate Instead of coding each Ul component or Developers write lightweight agentic
inputs, and render the output directly form, they define high-level instructions Instructions while agents generate API
in the browser based on user prompts and constraints that guide agent behavior or Model Context Protocol (MCP) calls

dynamically to retrieve backend data,
removing the burden of maintaining
static middleware libraries

This shift drastically curtails code complexity and sprawl and lowers maintenance effort, resulting in a leaner system that evolves
organically as business needs change.

Al Agents
for UI

Al Agents
for Middleware

Browser calls the Al
Agents in the app

Users request for
information

Al Agents will call
the middleware
Agents to fetch the
information
from the backend

Al Agents will
generate the API/MCP
calls on the fly

the information

Users consumes

I I
I I
I I
I I
I I
I I
I I
| Backend will return |
I I
I I
I I
I I
I I
I I
I I

the information The browser will render |~ >
the code that it received Al Agents will consume
from the information the information and
generate a “server side
code” around this
information
O — i L e e e e e e e e — = L e e e e e e e e — = L e e e e e e e e — = -

Figure 3: A sequence Diagram Showing How The Process Will Work End-to-End

| What Changes When Applications Become Agentic

In a DAGA-based concept, this shift allows teams to move beyond rigid architectures and focus on outcomes rather than
Implementation details.

The following highlights the key improvements enabled through agentic code generation:

| Reduced Code Volume | Lower Maintenance | Dynamic and Adaptive Interfaces
Runtime "transient" code generation Smaller codebases translate into lower Agents generate Ul elements
minimizes the need for large static maintenance overhead and fewer dynamically, allowing data to be
codebases, drastically reducing lines long-term dependencies for application presented in multiple formats like
of code to create and manage. support teams. tables, graphs, or summaries,

without explicit coding.

\ Simplified Form Creation \ Personalized User Experiences \ More Consistent Output
Complex web forms don't need manual Through memory and state management, Prompting techniques such as
coding as agents generate and render agents can maintain user preferences few-shot learning, in-context
form elements directly in the browser without developers coding for the learning, and chain-of-thought
as needed. personalization aspects. enable agents to produce more

predictable, consistent outputs.

Key Risks and Design As with any agentic Al application, there are inherent risks to this
Considerations

approach that must be carefully addressed in the design.

Type of Risk Description Mitigation Strategies
Agentic Al Agentic Al applications are vulnerable to « Use hyperlinks with predefined prompts instead
Security Risks prompt injection or prompt poisoning attacks. of free-form chat to reduce exposure to
Inputs are manipulated, leading the backend to untrusted inputs. and limit opportunities for
generate code containing sensitive data attackers to influence agent behavior
Tools Misuse and Attackers can misuse agents' tools to perform « Use MCP-based tools to access backend systems.
Privilege Compromise unauthorized actions against backend systems

« Implement a protected MCP server with authentication
and authorization controls to prevent misuse

Token Costs Overrun High-frequency application usage may lead to « Design the agents with all strict control parameters to
excessive token consumption, creating prevent unnecessary output generation.
unsustainable operational costs
« Avoid automation for static or infrequently changing
information to reduce token usage

Cascading Hallucination Agents may generate plausible but incorrect « Apply output validation, implement behavioral constraints,
information, and errors can compound when these deploy multi-source validation, and ensure ongoing system
outputs are used in subsequent steps. This risk corrections through feedback loops
aligns with issues highlighted in the OWASP Top 10
for LLM Applications « Undergo secondary validation before Al-generated knowledge

influences critical decisions, thereby helping manage risk as
human oversight scales

| What is needed to make this happen?

| Prompt Templates | Adopting Context Engineering | A DAGA Agentic Framework

Defining prompt templates to This is an emerging discipline. Context The agentic frameworks available today

capture various functional engineering dynamically shapes the information are multi-purpose and capable of

requirements of an application Al uses to improve accuracy and relevance. It supporting the topic of discussion.

define the boundaries for the goes beyond static prompts by managing However, there is need to develop an

agents to operate within. real-time, domain-specific context. This reduces agentic framework exclusively for DAGA
hallucinations and enables personalized, with focused capabilities.Integrations: Like
trustworthy outputs. It's key for building traditional integrations, the integrating
adaptive, agentic Al applications in enterprises. applications should expose their endpoints

to MCPs or APIs or other methods, while
ensuring proper security via authentication
and trustable authorization.

| Conclusion

Based on current research, this approach has not yet been widely implemented in enterprise application development. While data
platforms such as Snowflake Cortex Al have laid the necessary groundwork by applying agentic Al within analytics environments,
they stop short of enabling full-fledged business applications.

This opens the door to applying DAGA across enterprise domains, such as banking and human resources, where agentic capabilities
extend beyond analytics to encompass application behavior and user interaction.

Adoption, however, must be deliberate. Enterprises should begin with low-risk use cases and hybrid implementations that combine
agentic dynamic information with non-agentic static components. This measured approach allows teams to build confidence and
address security concerns, while creating more agentic models.

As the concept matures, applications can evolve from static constructs to adaptive systems that grow with business needs.

| About the Author

Imran Pachapuri

Principal Solution Architect
Tech Mahindra

Imran Pachapuri is a seasoned IT professional with more than two decades of industry
experience. Imran has experience delivering technology-driven solutions for global
enterprises across a wide range of industries. His expertise is defined by a blend of
deep technical expertise, strategic leadership and a commitment to drive meaningful

business outcomes.

12

About Tech Mahindra

Tech Mahindra (NSE: TECHM) offers technology consulting and digital solutions to global enterprises across industries, enabling transformative scale at unparalleled speed. With 152 000+ professionals across 90+ countries
helping 1100+ clients, Tech Mahindra provides a full spectrum of services including consult-ing, information technology, enterprise applications, business process services, engineering services, network services, customer
experience & design, Al & analytics, and cloud & infrastructure services. It is the first Indian company in the world to have been awarded the Sustainable Markets Initiative's Terra Carta Seal, which recognises global companies
that are actively leading the charge to create a climate and nature-positive future. Tech Mahindra is part of the Mahindra Group, founded in 1945, one of the largest and most admired multinational federation of companies.
For more information on how TechM can partner with you to meet your Scale at Speed™ imperatives, please visit https:/www.techmahindra.com/.

TECH
mahincra

o Nin X

www.techmahindra.com
www.linkedin.com/company/tech-mahindra
wwwitwitter.com/tech__mahindra

Copyright © Tech Mahindra Ltd 2026. All Rights Reserved.

Disclaimer: Brand names, logos, taglines, service marks, tradenames and trademarks used herein remain the property of their respective owners. Any unauthorized use or distribution of this content is strictly prohibited.
The information in this document is provided on "as is" basis and Tech Mahindra Ltd. makes no representations or warranties, express or implied, as to the accuracy, completeness or reliability of the information provided in
this document. This document is for general informational purposes only and is not intended to be a substitute for detailed research or professional advice and does not constitute an offer, solicitation, or recommendation
to buy or sell any product, service or solution. Tech Mahindra Ltd. shall not be responsible for any loss whatsoever sustained by any person or entity by reason of access to, use of or reliance on, this material. Information in
this document is subject to change without notice.

