
The Right-Shift Paradigm
in Software Development
Dynamic Agentic Generated
Applications (DAGA)

Whitepaper

Jan 26 Read Time - 15 Mins.

Executive
Summary

The software industry is rapidly integrating Generative AI, yet this shift has focused almost
exclusively on the speed of coding rather than the structure of applications. While GenAI
has dramatically accelerated how software is written, it has not fundamentally changed
how it is built or operated. Current implementations, primarily AI-powered pair
programming, remain limited to generating static code, missing the opportunity to
reimagine application architecture itself.

This paper introduces Dynamic Agentic Generated Applications (DAGA), a framework where
AI agents generate user interfaces and middleware logic at runtime. We examine how
shifting from static compilation to runtime generation can reduce technical debt, enable
hyper-personalization, and address the limitations of traditional software delivery.

Content
AI Is Transforming
Development—But
Not Applications
Page 3-4

What Changes When
Applications Become Agentic
Page 8

About the Author
Page 12

Key Risks and Design
Considerations
Page 9

What is needed to make
this happen?
Page 10

Page 5

What the Market
Offers Today

Page 6-7

A New Approach to
Application Development

Page 11
Conclusion

AI Is Transforming Development—But Not Applications

Generative AI is reshaping how software teams work across domains, from mobile applications to large enterprise systems. Tools such
as GitHub Copilot, AWS Q Developer, Windsurf, and others are revolutionizing the developer experience. They are now embedded into
development workflows, assisting developers and architects in code generation, accelerating application lifecycles, and improving
overall productivity.

One particularly impactful example is AI-powered pair programming, where agents collaborate with developers to generate code, fix
bugs, run tests, and manage dependencies. As a result, enterprises worldwide are actively encouraging developers to adopt these
AI-powered programming tools to boost efficiency and innovation.

However, this productivity leap has not translated into a fundamental shift in how applications are architected or how they behave
once deployed. Architects continue to design systems using established methodologies, and developers implement these designs
largely as static structures. AI accelerates coding but does not reshape the underlying application model. As a result, developers still
produce large volumes of static code—often hundreds of thousands of lines, that must be maintained by application support teams,
compounding operational complexity over time.

3

4

These dynamics give birth to several structural challenges that limit the industry’s ability to realize the promise of AI in software
development fully:

To understand why these challenges persist, it is helpful to examine how agentic AI is being used in the market today—and where its
limitations lie.

• Traditional application architecture remains unchanged even as AI accelerates development processes
• Developers generate significant volumes of code, increasing long-term maintenance burdens for support teams
• AI enhances development workflows but does not influence application behavior or adaptability once deployed
• The growing complexity of multi-agent coding tools results in more code to govern, debug, and support
• It is estimated that about 40% of AI generated code is unwanted code or “AI Slop” but still becomes part of the codebase
• Static UIs, forms, and middleware application programming interface (APIs) still require explicit coding, limiting dynamism and flexibility

Figure 1: Developers Use AI Pair-Programming Tools
to Build Traditional Applications

Developer
AI Pair

Programming
Tools

Modern Tools Traditional Applications

Middleware DatabaseUI/UX

What the Market Offers Today

Currently, the agentic AI solutions available in the market primarily focus on analytics. These platforms rely on agents operating
within their existing data environments to retrieve information, generate insights, and automate analytic workflows.

Snowflake Cortex AI is one such example. It provides LLM capabilities within the Snowflake Data Cloud, allowing users to analyze
structured and unstructured data using natural language across SQL and Python. While powerful for analytics, Cortex does not
generate application UI, workflows, or backend logic at runtime.

As a result, current offerings demonstrate how agentic AI can support analytic tasks, but do not address the architectural challenges
of enterprise application development.

5

6

To break this cycle, we propose a fundamental shift in how software applications are developed. We refer to this concept as Dynamic Agentic
Generated Applications (DAGA), in which agentic intelligence generates UI, logic, and integrations at runtime. This approach shifts the focus
from maintaining massive static codebases to designing AI agents that generate application behavior in real time.

Developers define minimal agentic logic and constraints, while the agents handle UI generation, data access, and interaction logic at runtime.
Consequently, the code is generated directly in production and rendered in the browser, enabling applications to adapt in real time.

Figure 2: Shifting the code generation responsibility from agents
in the “IDE tools” to the agents in the “Application”

Developer
AI Pair

Programming
Tools

Modern Tools Modern Applications

Middleware DatabaseUI/UX

A New Approach to Application Development

This shift drastically curtails code complexity and sprawl and lowers maintenance effort, resulting in a leaner system that evolves
organically as business needs change.

Figure 3: A sequence Diagram Showing How The Process Will Work End-to-End

Users Browser AI Agents
for UI

BackendAI Agents
for Middleware

Users request for
information

Users consumes
the information

Browser calls the AI
Agents in the app

The browser will render
the code that it received

from the information

Backend will return
the information

AI Agents will call
the middleware

Agents to fetch the
information

from the backend

AI Agents will consume
the information and

generate a “server side
code” around this

information

AI Agents will
generate the API/MCP

calls on the fly

Agents produce UI elements, validate
inputs, and render the output directly
in the browser based on user prompts

Runtime Code Generation

Instead of coding each UI component or
form, they define high-level instructions
and constraints that guide agent behavior

Minimal Static Code

Developers write lightweight agentic
instructions while agents generate API
or Model Context Protocol (MCP) calls
dynamically to retrieve backend data,
removing the burden of maintaining
static middleware libraries

On-Demand Interactions

This concept introduces several shifts in how applications are built:

7

8

Runtime "transient" code generation
minimizes the need for large static
codebases, drastically reducing lines
of code to create and manage.

Reduced Code Volume

Smaller codebases translate into lower
maintenance overhead and fewer
long-term dependencies for application
support teams.

Lower Maintenance

Agents generate UI elements
dynamically, allowing data to be
presented in multiple formats like
tables, graphs, or summaries,
without explicit coding.

Dynamic and Adaptive Interfaces

Complex web forms don’t need manual
coding as agents generate and render
form elements directly in the browser
as needed.

Simplified Form Creation

Through memory and state management,
agents can maintain user preferences
without developers coding for the
personalization aspects.

Personalized User Experiences

Prompting techniques such as
few-shot learning, in-context
learning, and chain-of-thought
enable agents to produce more
predictable, consistent outputs.

More Consistent Output

In a DAGA-based concept, this shift allows teams to move beyond rigid architectures and focus on outcomes rather than
implementation details.

The following highlights the key improvements enabled through agentic code generation:

What Changes When Applications Become Agentic

Figure 3: A sequence Diagram Showing How The Process Will Work End-to-End

Key Risks and Design
Considerations

9

As with any agentic AI application, there are inherent risks to this
approach that must be carefully addressed in the design.

Type of Risk Description Mitigation Strategies

Agentic AI
Security Risks

Tools Misuse and
Privilege Compromise

Agentic AI applications are vulnerable to
prompt injection or prompt poisoning attacks.
Inputs are manipulated, leading the backend to
generate code containing sensitive data

Attackers can misuse agents' tools to perform
unauthorized actions against backend systems

• Use hyperlinks with predefined prompts instead
of free-form chat to reduce exposure to
untrusted inputs. and limit opportunities for
attackers to influence agent behavior

• Use MCP-based tools to access backend systems.

• Implement a protected MCP server with authentication
and authorization controls to prevent misuse

High-frequency application usage may lead to
excessive token consumption, creating
unsustainable operational costs

• Design the agents with all strict control parameters to
prevent unnecessary output generation.

• Avoid automation for static or infrequently changing
information to reduce token usage

• Apply output validation, implement behavioral constraints,
deploy multi-source validation, and ensure ongoing system
corrections through feedback loops

• Undergo secondary validation before AI-generated knowledge
influences critical decisions, thereby helping manage risk as
human oversight scales

Token Costs Overrun

Agents may generate plausible but incorrect
information, and errors can compound when these
outputs are used in subsequent steps. This risk
aligns with issues highlighted in the OWASP Top 10
for LLM Applications

Cascading Hallucination

What is needed to make this happen?

Defining prompt templates to
capture various functional
requirements of an application
define the boundaries for the
agents to operate within.

Prompt Templates

This is an emerging discipline. Context
engineering dynamically shapes the information
AI uses to improve accuracy and relevance. It
goes beyond static prompts by managing
real-time, domain-specific context. This reduces
hallucinations and enables personalized,
trustworthy outputs. It’s key for building
adaptive, agentic AI applications in enterprises.

Adopting Context Engineering

The agentic frameworks available today
are multi-purpose and capable of
supporting the topic of discussion.
However, there is need to develop an
agentic framework exclusively for DAGA
with focused capabilities.Integrations: Like
traditional integrations, the integrating
applications should expose their endpoints
to MCPs or APIs or other methods, while
ensuring proper security via authentication
and trustable authorization.

A DAGA Agentic Framework

10

Conclusion

Based on current research, this approach has not yet been widely implemented in enterprise application development. While data
platforms such as Snowflake Cortex AI have laid the necessary groundwork by applying agentic AI within analytics environments,
they stop short of enabling full-fledged business applications.

This opens the door to applying DAGA across enterprise domains, such as banking and human resources, where agentic capabilities
extend beyond analytics to encompass application behavior and user interaction.

Adoption, however, must be deliberate. Enterprises should begin with low-risk use cases and hybrid implementations that combine
agentic dynamic information with non-agentic static components. This measured approach allows teams to build confidence and
address security concerns, while creating more agentic models.

As the concept matures, applications can evolve from static constructs to adaptive systems that grow with business needs.

11

12

About the Author

Imran Pachapuri

Imran Pachapuri is a seasoned IT professional with more than two decades of industry
experience. Imran has experience delivering technology-driven solutions for global
enterprises across a wide range of industries. His expertise is defined by a blend of
deep technical expertise, strategic leadership and a commitment to drive meaningful
business outcomes.

Principal Solution Architect
Tech Mahindra

www.techmahindra.com

www.twitter.com/tech_mahindra
www.linkedin.com/company/tech-mahindra

Disclaimer: Brand names, logos, taglines, service marks, tradenames and trademarks used herein remain the property of their respective owners. Any unauthorized use or distribution of this content is strictly prohibited.
The information in this document is provided on "as is" basis and Tech Mahindra Ltd. makes no representations or warranties, express or implied, as to the accuracy, completeness or reliability of the information provided in
this document. This document is for general informational purposes only and is not intended to be a substitute for detailed research or professional advice and does not constitute an offer, solicitation, or recommendation
to buy or sell any product, service or solution. Tech Mahindra Ltd. shall not be responsible for any loss whatsoever sustained by any person or entity by reason of access to, use of or reliance on, this material. Information in
this document is subject to change without notice.

About Tech Mahindra

Tech Mahindra (NSE: TECHM) offers technology consulting and digital solutions to global enterprises across industries, enabling transformative scale at unparalleled speed. With 152,000+ professionals across 90+ countries
helping 1100+ clients, Tech Mahindra provides a full spectrum of services including consult-ing, information technology, enterprise applications, business process services, engineering services, network services, customer
experience & design, Al & analytics, and cloud & infrastructure services. It is the first Indian company in the world to have been awarded the Sustainable Markets Initiative's Terra Carta Seal, which recognises global companies
that are actively leading the charge to create a climate and nature-positive future. Tech Mahindra is part of the Mahindra Group, founded in 1945, one of the largest and most admired multinational federation of companies.
For more information on how TechM can partner with you to meet your Scale at Speed™ imperatives, please visit https://www.techmahindra.com/.

Copyright © Tech Mahindra Ltd 2026. All Rights Reserved.

